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Abstract

The mathematical model of non-stationary coupled electromagnetic and thermal processes in polarizable and magnetizable axisym-
metric electroconductive solids subjected to electromagnetic field generated by external currents is proposed. The processes parameters
are connected through heat sources and temperature dependence of material characteristics. The problem is solved by finite element
method. The process of induction heating of a finite steel cylinder is considered.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Electromagnetic fields are widely used in modern tech-
nologies of high temperature heat treatments of solids. In
particular, induction heating is frequently applied for hard-
ening, quenching, tempering, melting, brazing and other
heat treatments of steels and demands very accurate con-
trol of heated depth and surface areas. However, behavior
of most steels during the heat treatment is non-linear and
very complex. In general, the electromagnetic field distribu-
tion in solid depends implicitly on the all past thermal his-
tory. Electro-conductive materials can be magnetized or
polarized during the process of heat treatment. The mag-
netic permeability of ferromagnetic materials depends on
the magnetic field intensity. Therefore, a practical need
arises in development of adequate mathematical models
of physical phenomena, which occur during a process of
induction heating of solids.

Consideration of above mentioned phenomena that
influence time dependent temperature distribution in a
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solid necessitates development of the complex mathemati-
cal models, which are not easy to be analyzed analytically.
Because of the temperature-dependence and non-linear
properties of most materials during induction heating, ana-
lytical solutions of the electromagnetic and temperature
distributions are very difficult to obtain. When solids with
complex geometrical shapes are considered, the problems
become more cumbersome. That caused intensive applica-
tion of numerical methods, the finite elements method
being the most widely used [1–7].

Because in the finite element method the external med-
ium domain is also meshed and the electromagnetic equa-
tion is solved on the global domain made out of the
external medium, the inductor and the solid, some numer-
ical models involve mixed finite element and boundary ele-
ment approaches [8,9]. Even though open infinite domains
are quite natural for mixed models, an approach using
finite element method is preferable since it involves sparse
matrices (leading to reductions in terms of CPU time and
memory requirements).

Most mathematical models use a harmonic approxima-
tion (limiting ourselves to principal harmonics of electric
and magnetic field strength) to evaluate the electromagnetic
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Nomenclature

B magnetic induction, B = (Br(r,z, t),0,Bz(r,z, t))
B* function relating induction and strength vectors

for magnetic fields in a solid
D electric induction, D = (0,Du(r,z, t),0)
D* function relating induction and strength vectors

for electric fields in a solid
D strength of electric fields, D = (0, Du(r,z, t), 0)
{Eh} electric field strength in the nodes of the finite

element mesh
H strength of magnetic fields, H = (Hr(r,z, t), 0,

Hz(r,z, t))
H1(X) Sobolev’s space, H1(X) = {w 2 L2(X),$w 2

L2(X)}
c heat capacity
j current density
J0 maximum value of the current
2L length of finite cylinder
2Li length of cylinder inductor
n unit vector normal to solid’s surface C,

n = (nr,nz)
[N] matrix of element’s shape functions
Q* heat source averaged over period of electromag-

netic field
R radius of electric-conductive cylinder
Ri radius of cylinder inductor
r, u, z cylindrical coordinates
T temperature

T0(r,z) initial temperature in the solid
TC Curie point
{Th} temperature in the nodes of the finite element

mesh
TS temperature of external medium
Tx period of electromagnetic field
V finite volume substituting infinite space

Greek symbols

b heat exchange coefficient
DtE time step for electromagnetic calculations
DtT time step for temperature calculations
e differential dielectric permeability of solid
e0 dielectric permeability of vacuum
c coefficient of electrical conductivity
C surface of region occupying by solid
g parameter characterizing time to reach steady

regime
k coefficient of heat conduction
l differential magnetic permeability of solid
l0 magnetic permeability of vacuum
lT 20

magnetic permeability averaged over the range
of magnetic field strength at T = 20 �C

x frequency
X region occupying by solid
Xel region occupying by finite element
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field in the solid subjected to external harmonic electromag-
netic field. This approximation is valid for linear magnetic
materials but can become inaccurate when dealing with
non-linear magnetic materials [3,6].

In this paper, the mathematical model and numerical
investigation of non-stationary coupled electromagnetic
and thermal processes in polarizable and magnetizable
electro-conductive solids subjected to electromagnetic field
generated by external currents are developed. Electromag-
netic field in the solid and in the external medium is
described by Maxwell’s equations. Temperature evolution
in the solid is governed by the classical heat transfer
equation. The model takes into account the temperature
dependence of all material coefficients and the non-linear
dependence of induction on the strength of both electrical
and magnetic fields. In a course of numerical investigation
these dependencies are approximated by interpolation
splines constructed by real curves describing temperature
behavior of a solid during the entire heating–cooling range.
2. The mathematical problem

Consider axisymmetric electro-conductive solid occupy-
ing region X. The solid is subjected to electromagnetic field
generated by coaxial with the solid currents of density
jð0Þ ¼ ð0; jð0Þu ðr; z; tÞ; 0Þ located in finite subdomain of exter-
nal medium. Electromagnetic and temperature fields in the
solid in the case of the following state equations:

Bð1Þ ¼ B�ðHð1Þ; T Þ; Dð1Þ ¼ D�ðEð1Þ; T Þ;
jð1Þ ¼ cEð1Þ; Bð0Þ ¼ l0Hð1Þ; Dð0Þ ¼ e0Eð0Þ ð1Þ

are described by coupled equations

curl HðmÞ ¼ oDðmÞ

ot
þ jðmÞ; curl EðmÞ ¼ � oBðmÞ

ot
; ð2Þ

c
oT
ot
¼ 1

r
o

or
kr

oT
or

� �
þ o

oz
k
oT
oz

� �
þ jð1ÞEð1Þ: ð3Þ

Here indexes m = 0 and m = 1 refer to external medium
and the solid, respectively.

Let us reduce the basic correlations (2) for electro-con-
ductive solid to a set of equations written with respect to
electric field strength vector E. Substitution of Eqs. (1) in
(2) yields for the solid:

curl Hð1Þ ¼ e
oEð1Þ

ot
þ

oDð1Þ�u
oT

oT
ot
þ cEð1Þ; ð4Þ

curl Eð1Þ ¼ �½l��
oHð1Þ

ot
� oBð1Þ�

oT
oT
ot
: ð5Þ
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Here

½l�� ¼
lr lrz

lzr lz

� �
; lr ¼

oBð1Þ�r
oH ð1Þr

; lz ¼
oBð1Þ�z
oH ð1Þz

;

lrz ¼
oBð1Þ�r
oH ð1Þz

; lzr ¼
oBð1Þ�z
oH ð1Þr

; e ¼
oDð1Þ�u
oEð1Þu

:

Note that in the case of harmonic quasi-steady external
electromagnetic field at condition c� ex, the displacement
currents are negligible compared to conduction currents in
a solid [10]. This is the case for the range of frequencies typ-
ically used in industrials set-up when we deal with highly
conductive solids. Hence Eq. (4) becomes:

curl Hð1Þ ¼ cEð1Þ: ð6Þ

Let us restrict ourselves by the case of an isotropic solid
(lr = lz = l, lrz = lzr = 0), whose differential magnetic
permeability l is directly derived – at a given temperature –
from the magnetization curve, given by function B* (H,T)
in (1).

Multiply Eq. (5) by l�1, take curl from both its side and
account for Eq. (6). Then equation for the only non-zero
component Eð1Þu of the electric field strength E(1) in the solid
takes a form:

� o

or
l�1 1

r
o

or
ðrEð1Þu Þ

� �
� o

oz
l�1

oEð1Þu

oz

 !
þ c

oEð1Þu

ot
¼ F p;

ð7Þ

where

F p ¼
o

or
1

l
oB�z

oT
oT
ot

� �
� o

oz
1

l
oB�r

oT
oT
ot

� �
:

Correspondent equation for a surrounding medium is as
follows:

� 1

l0

o

or
1

r
o

or
ðrEð0Þu Þ

� �
� o

oz

oEð0Þu

oz

 ! !
þ e0

o2Eð0Þu

ot2
¼�

ojð0Þu

ot
:

ð8Þ

Electric filed strength in a system solid-surroundings
being known, the magnetic field induction is found from
the relations:

BðmÞr ¼
Z t

0

oEðmÞu

oz
dt0; BðmÞz ¼ �

Z t

0

1

r

oðrEðmÞu Þ
or

dt0: ð9Þ

The common practice is to start with integral form of
Maxwell’s equations in establishing the correlations for
electromagnetic filed characteristics on solid-surroundings
interface C. These correlations, provided surfacial currents
are absent, yield two independent conditions expressing
equality of tangential components of electric and magnetic
field strength vectors on the interface [11]. In our case these
conditions are

Eð1Þu ¼ Eð0Þu ; ð10Þ
l�1 1

r

o rEð1Þu

� �
or

� l�1
0

1

r

o rEð0Þu

� �
or

0
@

1
Anr

þ l�1
oEð1Þu

oz
� l�1

0

oEð0Þu

oz

 !
nz ¼ 0: ð11Þ

Suppose the solid undergoes convective heat exchange
with external medium through the interface C:

k
oT
or

nr þ
oT
oz

nz

� �
þ bðT � T SÞ ¼ 0: ð12Þ

Put the following condition at the infinity and on the
z-axis

Eu ¼ 0: ð13Þ

Suppose at initial moment of time there is no electromag-
netic field in the system while the temperature in the solid is
defined by known function T0(r,z). Then the problem of
determination electromagnetic field in the system solid-sur-
roundings reduces to solving set of Eqs. (3) and (7) for the
solid and Eq. (8) for surroundings with zero initial value
of electric field strength, given initial temperature distribu-
tion T0(r,z) in the solid, interface conditions (10)–(12), as
well as conditions (13) at the infinity and the z-axis. In doing
so, components of magnetic induction B are determined
from (9), while magnetic field induction H as well as differ-
ential magnetic permeability l in the solid in each moment
of time are calculated using magnetization curve (1).

If we chose magnetic field strength H as a key function
in determination electromagnetic field, we would get two
equations (with Hr(r,z, t), Hz(r,z, t) unknown) to be solved
together with Eq. (3), instead of single Eq. (6). However, if
a long electro-conductive cylinder is subjected to quasi-
steady external electromagnetic field independent of z-
coordinate, the only component Hz is non-zero being
determined from the following equation (neglecting dis-
placement currents in the solid):

1

r
o

or
r

1

c
oH ð1Þz

or

� �
� l

oH ð1Þz

ot
¼ oB�z

oT
oT
ot
: ð14Þ

If the interface value of H ð1Þz is known the problem of
determination electromagnetic field and the temperature
in a cylinder reduces to solving Eq. (14) and

c
oT
ot
¼ 1

r
o

or
kr

oT
or

� �
þ jð1Þu Eð1Þu ; ð15Þ

Eð1Þu ¼
1

c
oH ð1Þz

or
: ð16Þ

Suppose in an initial moment of time the magnetic field is
absent, function T0(r) defines initial temperature distribu-
tion while interface undergoes convective heat exchange:

�k
oT
or
¼ bðT � T SÞ at r ¼ R: ð17Þ
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Also,

oT
or
¼ 0;

oH ð1Þz

or
¼ 0 at r ¼ 0: ð18Þ

The temperature T and the magnetic field strength H ð1Þz

being known, the differential magnetic permeability
lðH ð1Þz ; T Þ of a solid in each moment of time is found from
magnetization curve.

3. The solution procedure

The solution of the posed problem is constructed using
weighted residuals method [12]. With this purpose let us
multiply heat transfer Eq. (3) by arbitrary weight function
w 2 H1(X) and integrate obtained equation over domain X.

On using Green’s formulae and accounting for heat
exchange conditions (12), we getZ

X
c
oT
ot

wþ k
oT
or

ow
or
þ oT

oz
ow
oz

� �
� jð1Þu Eð1Þu w

� �
r dr dz

þ
Z

C
bðT � T SÞwr dn ¼ 0; 8w 2 H 1ðXÞ: ð19Þ

Let us apply the same approach to Eqs. (7) and (8),
substituting the infinite space by a finite volume V(X � V)
restricted by surface S located far enough from the solid
and given currents. Having accounted for Green’s formu-
lae, we arrive at the equations:

Z
X
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1
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We get ‘‘�” sign in Eq. (21) since n is an internal normal to
surface S relative to surrounding medium VnX.

Accounting for boundary conditions (11) and (12), we
get the equation valid for the entire domain V:Z

V
l�1

c

1

r
oðrEuÞ

or
1

r
oðrw1Þ

or
þoEu

oz
ow1

oz

� �
rdrdz

þ
Z

V
F c

oEu
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þ ec

o2Eu

ot2
þF d

� �
w1rdrdz¼ 0 8w1 2H 1ðV Þ;

ð22Þ
with the following notations:

lc¼l; ec¼ e; F c¼ c; F d¼�F p; Eu¼Eð1Þu for ðr;zÞ 2X;

lc¼l0; ec¼ e0; F c¼ 0; F d¼
oju
ot ; Eu¼Eð0Þu for ðr;zÞ 2 V =X:

(

Apply typical finite element discretization of Eqs. (19)
and (22) over spacial variables [12]. In doing so, discretiza-
tion of the domain V is done in such a way that the
solid-surrounding medium interface coincides with the
boundaries of respective finite elements. As a result, a set
of ordinary differential equations is obtained:

½L1�f _T hðtÞg þ ½L0�fT hðtÞg ¼ ffTg; fT hð0Þg ¼ fT 0
hg ð23Þ

½M2�f€EhðtÞg þ ½M1�f _EhðtÞg þ ½M0�fEhðtÞg ¼ ffEg;
fEhð0Þg ¼ 0; f _Ehð0Þg ¼ 0: ð24Þ

Matrix–vector characteristics of derived set of equations
are calculated by summing up appropriate characteristics
of finite elements:

½L0�el ¼
Z

Xel
k

oN
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� �0
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oN
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r dr dz
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Z
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V el
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þ 1
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� ��
r dr dz

½M1�el ¼
Z

V el

F c½N �0½N �r dr dz;

½M2�el ¼
Z

V el

ec½N �0½N �r dr dz;

ffEgel ¼
Z

V el

F d½N �0r dr dz:

Here prime means transposing.
In the case of long cylindrical solid the problem (14)–

(18) is reduced to a set of ordinary differential equations
in a similar way.

Cauchy problem (23) and (24) is solved by use of a uni-
fied set of single step algorithms [13], what allows to carry
out calculations for variable steps and orders of the
method.

The solving of equations of electromagnetic and temper-
ature fields with the same time step seems very ineffective in
the case of harmonic electromagnetic loadings because
temperature fields are much more inertial compared to
electromagnetic ones. Therefore developed general
algorithm allows to use different time steps for electromag-
netic (DtE) and temperature (DtT) calculations (the
method of ultra-weak coupling between both non-linear
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time-dependent fields) [1,16]. Then averaged over the per-
iod of electromagnetic field heat source:

Q� ¼
1

T x

Z T x

0

jð1Þu Eð1Þu dt;

is used in thermal conductivity equation.

4. Results and discussion

Consider high temperature induction heating of finite
electric-conductive cylinder of radius R, and length 2Li.
The cylinder is located in coaxial inductor of radius Ri

and length 2Li with current density given by expression:

jð0Þðr;z; tÞ¼ ð0;J 0ð1� e�gtÞ � sinð2pxtÞ;0Þ; r¼Ri; jzj6 Li:

ð25Þ
4.1. Non-poralizable and non-magnetizable material

We carried out computations for stainless steel with fol-
lowing characteristics taken from [11] (l = l0; c = 1.35 �
106 S/m; k = 16.7 W/(m K); c = 3.957 � 106 J/(m3 E); b =
167 W/(m2 K); J0 = 6 � 104 A/m; x = 3 � 104 Hz; g =
107 Hz; T0 = TS = 0) and compared our results with those
of [11].

In Fig. 1 used typical finite element meshes are shown
(R = 0.01 m; L = 0.04 m; Ri = 0.012 m; Li = 0.042 m;
R0 = 2.5R; L0 = 2L).

To examine convergence of numerical procedures the
computations at various finite element meshes, time steps
and sizes of domain V were carried out.

In Fig. 2(a) averaged heat sources Q* along the radius of
a long cylinder obtained in a closed form in [11] are shown
by solid line. Here are also shown heat sources in cross sec-
Fig. 1. Typical finite elements meshes.
tion z = 0 of the cylinder, obtained on meshes 20 � 80,
10 � 40 (solid lines), 5 � 20 (	) and 3 � 12 (�) of eight-
node biquadratic isoparametric finite elements, at time step
DtE = Tx/32 for electromagnetic calculations. Numerical
results obtained on meshes 20 � 80 and 10 � 40 practically
coincide with analytical solution. It could be seen that
already five biquadratic elements along cylinder radius
(Fig. 1(b)) give good agreement of the results.

In Fig. 2(b) curves 1–4 represent temperature distribu-
tions along cylinder radius in cross section z = 0 in moment
of time t = 7 s. The results were obtained for thermal calcu-
lation with time steps DtT = 0,209 � 10�6 s (Tx/16); 1s
(
105 Tx); 3,5 s (
106 Tx); 7s, respectively (curves 1–2
practically coincide). Note that temperature computation
for this problem can be conducted with time step DtT P
107DtE without accuracy losses thus making it possible to
find solutions of 2D problems for relatively short time.
Specifically, solution of this transient 2D (in terms of spa-
tial variables) problem at optimal finite element mesh
(5 � 20) and time step DtT = 1s takes 4 s of ATHLON-
2000 processor.

It should be pointed out that the substitution of sur-
rounding medium by domain V with following parameters:
R0 = 2.5R, L0 = 2L (Fig. 1(b)) does not affect solution for
the cylinder ("R0 > 2.5R), "L0 > 2L solutions coincide;
moreover in cross section z = 0 they practical coincide with
analytical solution [11] and solution of 1D problem (14)–
(18) for a long cylinder at boundary condition Hz = 6 �
104 sin2pxt A/m on a surface of the cylinder. These solu-
tions tend to differ when R0 < 2.5R, L0 < 2L.
4.2. Ferromagnetic material

Consider induction heating of the cylinder made of low
carbon (0.3%) steel. The cylinder (R = 0.01 m; L = 0.1 m)
is heating by the current (25) (Ri = 1.2R; Li = 1.05L;
J0 = 106 A/m2; x = 8 � 103 Hz; g = 105 Hz; b = 13 W/
(m2 K)). When external layer of thickness 1.5 mm in a cross
section z = 0 of the cylinder is heated to the temperature
T P 970 �C, the current is switched off and the cylinder is
cooled down due to convective heat exchange (b =
104 W/(m2 K)) with surrounding medium of the tempera-
ture TS = 20 �C (T0 = TS).

Non-linear dependencies of magnetic induction on mag-
netic field strength are shown in Fig. 3(a) for the tempera-
tures 20 (curve 1), 400 (2), 500 (3), 550 (4), 600 (5), 650 (6),
685 (7), 710 (8), 730 (9), 750 (10), 760 (11), 765 (12) �C.
These dependencies, however, become linear with a coeffi-
cient l0 when the temperature is above Curie point TC

(770 �C) and steel loses ferromagnetic properties. Temper-
ature dependencies of electrical conductivity, magnetic per-
meability, thermal conductivity as well as heat capacity are
known [14,15].

Firstly let us determine transient temperatures in the cyl-
inder within a model of a thermosensitive magnetic solid
with the value of magnetic permeability [16]:



Fig. 2. Heat sources (a) and temperature (b) distributions in the cylinder (t = 7 s) for different number of elements and time steps.

Fig. 3. Temperature dependencies of magnetic induction on magnetic field strength (a) and magnetic permeabilities averaged over the range of magnetic
filed strength (b).

Fig. 4. Temperature distributions in the cylinder.
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lmðT Þ ¼ l0 þ ðlT 20
� l0Þ 1� T

T C

� �6
 !

;

dependent on the temperature only (Fig. 3(b), curve 1).
Here

lT 20
¼ 1

H max

�
Z Hmax

0

lðH ; T j20 	CÞdH lðH ; T Þ ¼ ojBðH ; T Þj
ojH j

� �
;

is the magnetic permeability averaged over the range of
magnetic field strength at T = 20 �C calculated from mag-
netization curve in Fig. 3(a) (curve 1).

4.2.1. Model of magnetic thermo-sensitive solid
In Fig. 4 isotherms T in the solid are shown in the

moments of time when surface in cross section z = 0 is
heated to TC (to the left in Fig. 4) and the current is
switched off (to the right in Fig. 4), respectively. Boundary
effect in this case is spread over domain equal about six
radii of the cylinder the same estimation of the boundary
effect is got for L = 0.2 m; Li = 1.05L. Solutions in the cen-
tral section of the cylinder (in the vicinity of cross section
z = 0) are, in fact, independent of z and coincide (within
1% accuracy) with correspondent solutions of 1D bound-
ary-value problem (14)–(18), written in terms of magnetic
field strength Hz.

Effect of the temperature dependence of the steel electri-
cal conductivity coefficient c and magnetic permeability l
on temperature distributions in the cylinder was also
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investigated. Temperature rise in time on cylinder surface
for four characteristic cases are shown in Fig. 5: 1 – both
coefficients are temperature dependent; 2 – electric conduc-
tivity coefficient is constant (cm = 2.08 � 106 S/m), aver-
aged over heating range, while magnetic permeability is
temperature dependent; 3 – magnetic permeability l is tem-
perature independent and equal l20 (at T = 20 �C), while
electrical conductivity coefficient is temperature dependent;
4 – both coefficients are temperature independent. Already
at the temperature around 300 �C consideration of temper-
ature dependencies of electrical and physical characteristics
is crucial. It becomes even more important with further
heating of the cylinder. As the temperature approaches
Curie point TC (above 600 �C), heating of the surface slows
down significantly what can be associated with sudden
drop of steel magnetic permeability near Curie point.

Already twenty elements along cylinder radius with time
step DtE = Tx/16 assure convergence of the solutions.
However, obtained approximate values of magnetic field
strength near Curie point differ considerably from exact
solutions at such spatial approximation. In particular, the
difference reaches 20% at forty elements over cylinder
Fig. 5. Temperature rise in time on cylinder surface for different ways of
simulation.

Fig. 6. Changes in time of maximum value of magnetic field strength on
cylinder surface for different finite element meshes.
thickness while even more than 200% if number of elements
is twenty. In Fig. 6 changes in time of maximum value of
magnetic field strength on cylinder surface are shown when
number of biquadratic elements at time step DtE = DtT =
Tx/32 is twenty (curve 1), forty (curve 2), eighty (curve 3)
and two hundreds (curve 4).

Twenty biquadratic elements over cylinder thickness are
enough for computation temperature field – eighty ele-
ments give practically the same accuracy, in fact.
4.2.2. Model of ferromagnetic thermo-sensitive solid

In Figs. 7 and 8 curves 1–9 show profiles of maximum
values of electric Eu and magnetic Hz field strength and
temperature along cylinder radius in a cross section z = 0
of a ferromagnetic cylinder during heating for moments
of time t = 0.007; 0.02; 0.04; 0.06; 0.08; 0.1; 0.12; 0.14;
0.159 s. Because of temperature dependencies of electric
and physical coefficients of steel the maximum values of
electric and magnetic field strength change slowly period
by period. At the initial phase of the heating the skin effect
is clearly observed. However, magnetic field penetrates dee-
per as heating of external layers of the cylinder progresses.
When they are heated to Curie point or above the loss of
ferromagnetic properties causes considerable changes in
parameters of processes in the cylinder. Maximum values
of electric field strength (and heat sources power, respec-
tively) move in the bulk of the cylinder so that maximum
heat is released in the domains where ferromagnetic prop-
erties are not lost. In doing so, heating of surfacial layers
slows down.

The current is switched off when cylinder is heated to
970 �C or above at needed depth in moment of time
t = 0.159 s. Cylinder begins to cool down due to convective
heat exchange with surrounding medium. Temperature
change during cooling in cross section z = 0 with coordi-
nated r = 10 (curve 1), 8 (2), 6 (3), 5 (4), 4 (5), 0 (6) mm
are shown in Fig. 9. It is seen that core of the cylinder is
still heated during t = 2 s after current being switched off
due to thermal conductivity mechanism.

Numerical analysis indicates that a time step
DtE P x�1/250 assure the convergence of coupled electro-
dynamics and thermal conductivity problem solutions. In
Fig. 10 distributions of the temperature in the cylinder in
the moment of inductor switching off are shown for the
following values of time discretization step DtE of electro-
dynamics equations: 0.5 ls (curve 1, corresponding to low-
est temperatures in the bulk of the cylinder and highest
ones on its surface); 0.25 ls (2); 0.05 ls (3); 0.01 ls (4).
400 bilinear elements used along cylinder radius.

Results for the duration of a heating of cylinder to
needed temperature predicted by two considered models
differ nearly by two times – 0.289 s is the prediction of
the model of magnetic solid while ferromagnetic model
gives 0.159 s. Because of that, a set of computations was
carried out to find out such magnetic permeability indepen-
dent of magnetic field strength:



Fig. 10. Temperature distributions in the cylinder in the moment of
inductor switching off for different time steps of electrodynamics
calculations.

Fig. 11. Distributions of temperature in the cylinder in the moment of
inductor switching off for different ways of simulation.

Fig. 7. Profiles of maximum values of electric (a) and magnetic (b) field strengths in the cylinder during heating.

Fig. 8. Profiles of temperature in the cylinder during heating.

Fig. 9. Temperature changes during the process in different points of
cylinder.
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which would predict the same heating duration to a given
temperatures by both models (temperature dependence of
magnetic permeability lg is shown in Fig. 5, curve 2).

Figs. 11 and 12 illustrate distributions of maximum val-
ues of temperature, as well as electric and magnetic
strengths in the moment of inductor switching off. Curve
1 was obtained within the model of ferromagnetic material
while curves 2 and 3 were predicted by magnetic material
model with respective magnetic permeabilities lm and lg

dependent on the temperature only. It could be seen that
it is possible to find out such magnetic permeability that
would assure accurate enough electromagnetic field charac-
teristics and correspondent temperatures in ferromagnetic
cylinder.



Fig. 12. Distributions of maximum values of electric (a) and magnetic (b) strengths in the cylinder in the moment of inductor switching off for different
ways of simulation.
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5. Conclusions

Numerical results obtained clearly indicate on the neces-
sity to account for temperature dependencies of electric
and magnetic characteristics in considered problems. In
particular, neglecting of a temperature dependence of
electric conductivity coefficient of low carbon steel consid-
erably effects on a correctness of the solutions even at
temperatures around 300 �C. Temperature dependence of
magnetic permeability in the temperature range below
600 �C can be neglected.

Simulations for induction heating of other materials can
also be done using developed approach as long as the rele-
vant material properties are known.

Proposed approach to determination electromagnetic
parameters and temperature in electro-conductive solid
located in external electromagnetic field could be applied
to analysis of stress–strain state of the solid, namely, to
determination residual stresses due to induction heating.
It can also be of use when optimum, by certain criteria,
induction heating regimes are to be developed for electri-
cally conductive materials, these criteria being particularly
homogeneity of a heating, minimization of power expenses,
residual stresses reduction, etc.
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